Cluster Analysis Statistical Spectroscopy for the Identification of Metabolites in 1H NMR Metabolomics.

Authors:

Silke S Heinzmann, Melanie Waldenberger, Annette Peters, Philippe Schmitt-Kopplin

Year of publication:

2022

Volume:

12

Issue:

10

ISSN:

2218-1989

Journal (long):

Metabolites

Journal (short):

Metabolites

Impact factor:

5.581

Abstract:

Metabolite identification in non-targeted NMR-based metabolomics remains a challenge. While many peaks of frequently occurring metabolites are assigned, there is a high number of unknowns in high-resolution NMR spectra, hampering biological conclusions for biomarker analysis. Here, we use a cluster analysis approach to guide peak assignment via statistical correlations, which gives important information on possible structural and/or biological correlations from the NMR spectrum. Unknown peaks that cluster in close proximity to known peaks form hypotheses for their metabolite identities, thus, facilitating metabolite annotation. Subsequently, metabolite identification based on a database search, 2D NMR analysis and standard spiking is performed, whereas without a hypothesis, a full structural elucidation approach would be required. The approach allows a higher identification yield in NMR spectra, especially once pathway-related subclusters are identified.

Participating Institutes